JOURNAL OF APPROXIMATION THEORY 24, 177-207 (1978)

Convergence of Generalized C-Fractions
M. G. pE BRrUIN

Universiteit van Amsterdam, Instituut voor Propedeutische Wiskunde,
Roetersstraat 15, Amsterdam, The Netherlands

Communicated by Yudell L. Luke

Received March 9, 1977

INTRODUCTION

An important part of the study of the analytic behavior of continued
fractions (Perron [7], Wall [15]) is devoted to so called C-fractions corre-
sponding to a formal power series. These C-fractions also appear, with a
minor modification, in the first and second coefficients, as continued fractions
of which the approximants are nothing but the approximants on a normal
stepline taken from the Padé table for a certain power series (the corre-
sponding power series if we consider the main stepline).

In view of this connection it is possible to derive convergence of sequences
of Padé approximants, using the behavior of continued fractions. Thus
following theorem due to van Vieck [14] and Pringsheim [8] (see also Perron
[7, p. 148]) is of some interest.

THEOREM. Consider a nonterminating regular C-fraction

a,x as X ax = ,
D 2 By 2R (@ #0forveN). (0.1)

A. Let the coefficients satisfy |a,| < g(eN). Then the C-fraction
converges to an analytic nonrational function F(x)on® = {x e C|| x| <1/4g};
on D this function F(x) equals the corresponding ( formal) power series of (0.1).

B. Let the coefficients satisfy lim sup,... | a, | < g. Then the C-fraction
converges to a meromorphic nonrational function on D (as in A); in the poles of
the limit function (0.1) is inessentially divergent. On a neighborhood of x = 0
the limit function equals the corresponding ( formal) power series of (0.1).

Remark. It might be convenient to recall some facts about continued
fractions.
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(a) If

‘ . ax agx ,,,\
0 = 1 B BE D en), gy

then 7, == 4,/B, (ve N, = N U {0}), where the 4’s and B’s satisfy the recur-
rence relation 2, = .Qu_ + a,x82, 5 (u = 1,..., ») with initial values 4_; —=
Ay=By,=1,B_, =

(b) The A’s and B’s are polynomials in x with 4,(0) = B(0) = 1
(reN,).

(¢) The continued fraction (0.1) is called convergent to a function f(x)
on D CCif lim,_,, 9,(x) = f(x) for all x € D; uniform convergence on D is
defined in the usual way.

(d) The continued fraction (0.1) is called inessentially divergent in x, if
lim, ..., B,(x0)/A,(xg) = 0.

Because in the study of a certain generalization of the Padé table (to a simul-
taneous Padé table for n formal power series) the generalized steplines give
rise to a kind of generalized C-fraction (see de Bruin [2]) it is natural to study
the analytic behavior of these multidimensional continued fractions to derive
convergence results for the simultaneous Padé table (see de Bruin [3]).

The generalization of the notion of continued fraction suitable for our
purposes can be seen as a form of the so-called Jacobi—Perron algorithm
(Perron [4]); an algorithm that has been studied from different viewpoints by
o.a. Bernstein [1] and Schweiger [9].

In Section 1 of this paper the generalization of a continued fraction is
given, along with a very elegant definition made possible by the extension of a
method described by Thron [11, 12] for the ordinary case.

Then follows the definition of the concept of convergence (Section 2), the
generalization of a C-fraction including the correspondence with (in this
situation) n-tuples of formal power series (Section 3) and the notion of a
regular C-n-fraction (Section 4).

In Section S the main results on convergence are given, which then are
proved by a chain of lemmas in Section 6. The method of proof employed, is
a direct generalization of the method of proof for the ordinary C-fraction as
given in Perron [7, pp. 64, 148].

It must be noted, however, that the convergence theorems are by no means
best possible in the sense that they imply convergence of the regular C-n-
fraction on the entire disc {x €e C | | x | < min(R, ,..., R,)}, where R; is the
radius of convergence of the jth corresponding power series (j = 1,..., n); see
Example 5.1.
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1. n-FRACTIONS

Let n be a fixed natural number and let the quantities b, a!”, b, (i = 1,...,
n; v € N) be (as yet unknown) complex numbers, b, = 0 (v € N), which may
depend on a (some) variable(s).

An n-fraction is now a set of n-fractions, with common denominator, of the
form given below,

(1)
a{2) + az()
N aan +
W a? @ ba - by + -
by’ + - , by + - yerrs
n—1 n—1
w , 4 -+ ) , 43 -+
A Y b O Bt
! a(n) 4 ! a:(;,) 4
by - b
2 T by + - 2 by + -
(n—2)
(n—-1) as ~+
w e T by + -
a + o
a” +
by + ;; T
b(()”) + ( 31)
w , 9 +
R
bt (n)
an s
bt g

The manner in which the successive fractions are formed, can easily be
deduced from the following diagram:

a? I a 1 a®, ' a® '
===l = —— - |- — — — |~ ~——I
b(()x) + i a}z) :' + !'agz) ‘ll e lll a:z) f 1. : a® ‘! 4+ e
B L
| | ; a.n
=~ ——] = — — = - —— — |— — — —
béﬂ—Z) + ||' ai’n-l) l’l + ||' a(zn_x) '; 4o E asﬁ-l) 4 ] asn—l) E 4
I~ — — —| |- —— - |— = — =1 f—— =
b(()n—]) +fl[a<n) ?+ i, 2 :} Ao 5 aff’l “ + ‘; afn) 5 N
| | 1 ! | ! ! !
e L R Lo T o L
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Terminating the n-fraction after the 1st, 2nd,..., column, we get the so
called approximant n-tuples

b(l) b (Z) b(n)
. 0 -

() (2) (n)

a (n) a
b(1)+ b(2) \ 1__,_” bn
v by P
) (n-1)
@ |, 4 m , B
T LY T S N
b + —2 (),bf + (Z) yeeey D (——
a g abn a "
b 2 b = b, + =2
1 + b‘) 1T b: ) b;

From this we see that adding a column to the n-fraction (i.e., v — 1 — »)
results in replacing @'V, , @'®, ..., a"?, ..., @™y, b,_ by a¥; , a®; + a'V'/b, ...,
a?y + a¥ Vb, ,...,a", + a"V/b,, and b,_; + a™/b,, respectively. The
numerator is found one row higher up and the denominator (always b,) in the
last row of diagram (1.1).

In the sequel we use for a nonterminating n-fraction the notation

agl) ail)
p :
; : : 1.2
R (1.2)
B by - b,

and for an n-fraction terminating with column with index » and final approxi-
mant n-tuple &PY,..., £ the notation

;1) aﬁl) ail)
[§3] .
& bo :
=1. : . 1.3
: : a® gt (1.3)
& by’ by b,

If we take n = I (and omit the part between the dotted lines in diagram
(1.1)), we are led to the definition and notation for an ordinary continued
fraction as given in, for instance, Perron [6, 7].

As in the references just mentioned, an n-fraction (1.3) can be calculated
“backwards.” Put

(1) (1)
5(1) (2) iy (252 T
v a, k a(z) .
: . A ; k
o . ( ) y M f——
: a,” : (n) O |
g('n) b §(7L) ay Apiq a,
s Y * by by 0 b,
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Then (1.1) with last column with index v leads to

@ (1) (
W _ e a, W _ @, &h W _ 0 !
&5 = £ =a +
v—1 a, g(") ’ v—2 v—2 (m) °°°*» 51 E(m ’
¥ v—1
(1) (1)
- b —i_ §(n) 4
(1) 1) @
@ @ £ @ @ , &4 @ _ @, &
fu-l = a4 ét_«:m ’ § = dy_g ) s ST T 4 + TR
v v—1 2
(2) (2 @
2, 1
i} = bO + (n)y °*
1
(1.9)
. (n—2) (n—2) (n—2)
w1 _ ) & -1 _ ) &1 1) _ ) &
gvfl = avnl f(n) £V"2 - avﬁ2 (n) '3 ln - aln + g(n) H
v y—1
( ) ( ) (n 2)
n—1 n—1
)] b + g(n) >
(n-1) (n—1) (’n~1)
() £ (n) &5 o
gn = bv~1 + f(,,” ’ gvﬁz = bv—2 + (n) seees "= bl + f(n) »
v v=—-1
- ) (n—1)
1
o =Dby" + g
1

1t is also possible to use the Euclidean greatest common divisor algorithm
for an n-tuple of integers which leads to an infinite number of linear equations
in an infinite number of unknowns; then it is easy to derive the recurrence
relations for the numerators and denominators of the sequence of approxi-
mant n-tuples given in Theorem 1.1 (Perron [4], de Bruin {2]).

THEOREM 1.1. Consider an n-fraction of form (1.2) and denote the approxi-
mant n-tuples by ({9{?}7_)2., (i.€., the values of the terminated n-fractions (1.3)
connected with (1.2)). Then 7 = AP/B, (i = 1,...,n; ve N,) in which the
numerators and denominators satisfy a recurrence relation with initial values as
given below,

Q= b0, + a0+ a0, o+ 00,
(v € N; for 2 read AV,..., A™, B),
AY =80, B =0(.j=1..n),
49 — p@ (i=1,.,n), B,=1.

(1.5)
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COROLLARY 1.1.  For an n-fraction (1.3) with last column (a'V, £2,..., &™),
we have
W _ g(n)A(ﬂ g(n 1)A(1) 4o g(l)A(t) (1)A51)n . (i o "
0 = l,..., n),
fl(}n)BV“ + gl(/n I)Bll"“z ot T ff'l)B P _!7 a()? )B 1’7"!71

where the A’s and B’s follow from (1.5).

Remark 1.1. For n =1 we have again the formulas for an ordinary
continued fraction.

There is, however, a far more elegant way of defining an n-fraction if one
uses a generalization of the method of successive linear fractional trans-
formations (which is extremely useful in deriving convergence results) as
described by Thron [12] (for more details see [11]) for an ordinary continued
fraction.

Consider an n-fraction (1.2) with b = 0 ( = 1,..., n) and construct the
following transformations s : C* — C (i = 1,..., n; v N)

) Q)
_ 4 @ a4 X
b, + x, s A (xl yores Xp) = b, + x, (i 2,,()]1)6)

Using (1.6) we define another sequence of transformation n-tuples in an
inductive way

(
svl)(xl LA xn) =

S xy gy x) = SPGP sy (=1, mveN{1) (1D
with initial n-tuple
Sxy ey x0) = 89(x, 5.0y X2) (i = 1,.., n). (1.8)
THEOREM 1.2. The transformations (1.7) and (1.8) satisfy

Af“ -+ anSi)l + xn~1An(22 + 4 xlA;(«i)n
Bv + an,,,l + xﬂ—le—2 + o + xlB —n

(i=1,..,mveN), (19

S5y ey X,) =

where the A’s and B’s follow from (1.5) with B\ = 0 (i = 1,..., n).
Proof. Follows by induction on v. [|

It is now possible to define the concept of an n-fraction in the following way

DeriniTION 1.1, Let b, al?, b, (i = 1,..., n; v € N) be complex numbers
and define the transformations S? : C* -~ C (@ = 1,..,m;veN) as in (1.7)
and (1.8);S§? =0 (i = 1,...,n). Then the sequence of n-tuples ({bf" -~
SH(0,..., 0 D2, is called an n-fraction.
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As for the ordinary continued fraction we can give an n-fraction by means
of a product of matrices.

Let AM,..., A{™, B, be the numerators and denominator of an n-fraction
(1.2) as given by Theorem 1.1 and define

A 4 4™ b 1 0~—0
v . NN
w, = | 0 : weN), W= |- ’\0 ,
AY a4, by" I
B, B, -~ B, 0 0
b, 1_0—0
al” 0 \l
D I l\o (v e N).
: 1
a’ 0——0

Then it is obvious that ¥, = A,_,B, (v € N), from which we derive for later
use

det Ay, = (=1, det A, = (—1)" 00 ..., eN). (1.10)

Finally we give in this section a theorem concerning multiplication opera-
tions for n-fractions. Although the proof is relatively simple (it can be given
using a generalization of the Euler-Minding formulas; see de Bruin {2]) it is
omitted here.

THEOREM 1.3. Consider an n-fraction of the form (1.2) with vth approxi-
mant numerators A (i = 1,..., n) and denominators B,(veN,) and the n-
fraction given by

" ag)mpo  Pnsr af:)pypv_l . Pym
b((lz)PoP—l U Pons1 Qy Pr1Po 7 P-niz T G PuPe1 T Pr-ntd
.bo PoP—1 """ Pony2 :

: {(n-1) ' '

l()n) ! PoP—1 a{")plpo al('N)pvpv—l

bon Po b1P1 bvpv

“.(1.11)

with vth numerators A? (i = 1,..., n) and denominators B, (v € N,), where the
complex numbers p_,,_; , Pz seees Po s P1s---» @l are different from zero. Then (1)

(@ i .
Av) = PPu—1 7" P1Pe T P—n+iA:f) (l - ]s'--7 n)

s veN,.
Bv = PuPr1 7T ple(BO = By = ]) ’
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(ii) Under the condition a'* # 0 (v € N), an n-fraction with approximant
numerators

AP (i = 1,..., n) and denominators B, (v € N,) satisfying
ADIB, = pop_y = p_n i APIB, (i = 1,..., n; v € N,) for certain
Po s Poi 5oy Pnyy, @l different from zero, has the form (1.11).

Remark 1.2. When p_, .1 = p_,.0 == " = p_; = pg = |, the n-fractions
(1.2) and (1.11) have the same sequence of approximant n-tuples; they are
called equivalent; this gives rise to an equivalence relation. From this we can
see that in these circumstances the multiplication operation does not influence
the convergence behavior (see Section 2 for a rigorous definition) and there-
fore can be used to lead to an a-fraction with coefficients that are much more
tractable.

2. THE CONCEPT OF CONVERGENCE

Consider terminating and nonterminating n-fractions

a0 g adv o gW
W . V p ’
0 . . 0
: : (A); Do ' (B @1
R % Lo g
b(()n) by - b, b(()") by - b,

and denote the approximant n-tuples (from Theorem 1.1) by {4)/B,}*; for
k—=0,1,.,vand k e N,, respectively.

DesiNITION 2.1, A, The n-fraction (2.1A) is called undefined when
B, = 0; otherwise it is called defined and the values are given by the notation
(1.3).

B. The n-fraction (2.1B) is called convergent when the limits lim,._ .
ADB, exist for i = 1,..., n; otherwise it is called divergent. A convergent
n-fraction with limit #-tuple &U,..., £ is given by the notation (1.3) with
the nonterminating array on the right-hand side.

Remark 2.1. If the n-fraction (2.1B}) is convergent, we have B, # 0 for
v > v, . The following theorems are needed to give the proofs of the results
of Section 5.

THEOREM 2.1. When a\V,a$",...,al" %0, any two of the following
Jormulas imply the third one.
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- a? - a? o
0 b(l) , . (1)
A o : : A
= . (2.2)
) ST A ’
n —
0 b((,”) bl . b/\*l gn)
{ §1]
@) a/\Bl oa)
A . a?) : R
= { . . (2.3)
: ORI (n) ’
(n) ay G 4
A b/\ b/\+1 bv
) a? g e &Y
) . b(()l) :
X . . . . (2.4
o . ain) . agn) A alfn)
0 b((,") by = by - b,

The n-fractions (2.3) and (2.4) must be both non-terminating or must be both
terminating, in which case the index of the last column must be the same.

Proof. For an elementary proof analogous to that of the theorem for
n = 1 in Perron [6] see de Bruin [2] (compare Perron [5]). ||

THEOREM 2.2. Let an n-fraction K of the form (1.2) and an n-fraction L of
the form (1.11), with p, % 0 for all v, be given; either both terminating (with
same index in the last column) or both nonterminating. Then

K defined|convergent < L defined/convergent.

Proof. This is an immediate consequence of Theorem 1.3.

Remark 2.2. In the case that the coefficients appearing in an n-fraction
depend on for instance a variable x, the notion of uniform convergence on a
set G of x-values is defined in the usual way: an n-fraction (1.2) is uniformly
convergent in x on G to an n-tuple of functions £"(x),..., £&{”(x) if there exists
for each € > 0 an N, such that | £7(x) — A (x)/B(x) < e(i = 1,..., n) for
v > Nand all xeG.

For an ordinary continued fraction converging to (if it is nonterminating)
or having the value (if it is terminating) &, , we have a very simple inversion
theorem (see Perron [6]).

If
a 28
= b, + l_ll B
50 0 b] bz -t
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then

(@ & #0-

SN N Y Y R
(b) fo-—ow-,—boJ+n;+|b2 +

1s inessentially divergent (nonterminating case)/undefined (terminating case).
The same can be done for n-fractions; in this case we have a more complex
situation due to the ““intertwining” fractions of (1.1).

THEOREM 2.3.  Let an n-fraction with values £V,..., &8 as in (2.4) be given,
either terminating or nonterminating. Then we have for each je{l,...,n},
fixed,

é‘:(()frfl)/g(a') 1 - 11 agl) a‘(’l)
W 20 00 - 0 by '
) & /f K
0 —=
‘Eo 7> = 1 /ff
. . . . a{") a:")
((]j—l)/é:gj) 00 - 0 b((,") b, e b,
n — j columns (2.5)
Proof. See de Bruin [2]. 1

DerINITION 2.2, Let je{l,..., n} be fixed.
(a) A terminating n-fraction (with column index v) is called j-undefined
if B, =0, AY = 0.

(b) A nonterminating n-fraction is called j-inessentially divergent if
lim,_, B,/AY = 0, im,_,, AP/AD exists for i = 1,...,n, i % j. Using these
concepts, we can give a theorem like Theorem 2.1.

THEOREM 2.4. Let je{l,..., n} be fixed. When aiV, aiV,..., &P # 0, any two
of the following formulas imply the third one.

a e, o
b((!l) : : /(\1)
: (2.6)
. al('n) a/(\n)l .
bgﬂ) by by /‘\n)

is j-undefined,
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wy [, @
} ax '
=1: : : 2.7)
) a” an o a”
A by by b
is a nonterminating convergent n-fraction, and
agl) . af\l) " af.l)
b(()l) .
: . . (2.8)
T B
b,()") by, - b, - b,

is j-inessentially divergent.

Proof. Reformulate (2.6) and (2.8) by putting

1 1
00 0
00 - 0

n — j columns

in front of the right-hand sides; their “final” values then become A!Y+1)/
A AM[AD | BIAD, AV 4D, AGD/AD (when AV/B,..., A™B are
the final approximants of (2.6)) and the limits of the sequences {A%+1/ 4},
ey (A AP}, {B,JAD)}, {AD]AD,..., {AU=-D] AN (if they exist). Then apply
Theorem 2.1. [

3. C-n-FrRACTIONS AND FORMAL POWER SERIES

In this section we consider n-fractions (1.2) in which the a’s and b’s depend
upon a complex variable x.

DermNiTION 3.1. A C-n-fraction is an n-fraction of form (1.2) with
b = by x40 (i = 1, n — 1), B = 1, b, = 1 (v € N), &P = g; ,x"@»
(i=1,.,n,veN), where the coefficients b, ¢,..c, buvo» @i (E = 1,..., 15
v e N) are complex numbers with a, , # 0 (v € N) and the exponents r(1, 0),...,
rin — 1,0), r(i, v} (i = 1,..., n; v € N) are nonnegative integers satisfying the
conditions
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0<r(,0) <r(j,1) <r(j—1,2) <

< r(2,j— 1) <r(l,j) (j=1..,n—1
(3.hH
1 <r(mv)y<rin—1l,v+ 1 <r(m—2,v+2) < -

<r@Qv+n—2y<r(l,v4n-—1) (reN)

The C-n-fraction is called without zero entries if all coefficients b, 4 (i = 1,...,
n—1),a;, (= 1,.,n;veN) differ from zero.

Remark 3.1. Conditions (3.1) imply r(i,v) Zmin(z + 1 — i, v) (i =
1,.,nveN).

Remark 3.2. The numerators and denominators of the approximants of
a C-n-fraction are polynomials in x with 4/(0) = B,0) == 1 (v € N,).

C-n-fractions can be seen as a direct generalization of an ordinary C-
fraction (corresponding to a formal power series; see Perron [7]). Because a
C-n-fraction gives rise to n sequences of rational functions, it is obvious that,
if a correspondence with formal power series can be found, an n-tuple of
formal power series has to be considered. In the following, some theorems
concerning this correspondence are given without proofs; for these we refer
to de Bruin [2].

THEOREM 3.1. A terminating C-n-fraction represents an n-tuple of rational
Sfunctions of x; the C-n-fraction is undefined in the poles of these rational
Jfunctions.

THEOREM 3.2. Toeach C-n-fraction without zero entries there corresponds
an n-tuple of formal power series f@(x) = c{ + cf'x 4 ¢{"'x® + - with
c§™ = 1, in the following way:

(1) The C-n-fraction is nonterminating.

The MacLaurin series for AP (x)/Bx) agrees with f (x) (i = 1,..., n) term by
term, to a power of x that increases with v, but at least up to and including
x (v e Ny).

(i) The C-n-fraction terminates with column with index A.
The MacLaurin series for A(x)/B/(x) agrees with that of A{(x)/B\(x)

(i = 1,..., n) term by term, to a power of x that increases with v, but at least up
to and including x* (v = 0, 1,..., A).

THEOREM 3.3. To each n-tuple of formal power series fU(x),..., f™(x)
with f30) = 1, for which the functions 1, f©,..., "™ are linearly independent
over C[x], there corresponds a nonterminating C-n-fraction without zero
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entries. The C-n-fraction in question can be found by the following formal
construction

al lxr(l 1)
BRGH
(bro» a1y # 0; 0 < r(1, 0) < r(1, 1) minimal; £1"(0) = 1),

f(l)(x) — bl,oxr(l,O) +

FO(x) = by gx"80 - ﬁﬂ‘)_

)
(bio #~ 0; r(i, 0) minimal) for i = 2,...,n — 1,
n—1) x)
™) =1+ f(n)(i)

Once fM,..., ™ with £{™(0) = 1, have been found, the formal power series

D f 51’1 follow from

al,v+lxr(l'v+1)
VERXE))
(@50 » @141 7 0; 72, ¥) < r(1, » + 1) minimal; £(0) = 1),

£6) = apxren 4

(1)
F90) = g i o Lo

N6l
(@42, 7 0; r(i + 1, v) minimal) for ;i = 2,...,n — 1,

(n—1)

10 =1+ LS

ExampLE 3.1. Consider the functions ¢%, —In(l — x)/x. Because they
satisfy the conditions of Theorem 3.3, the construction leads to a non-
terminating C-2-fraction. The first columns look like

1 x/2 —x/2 —3x/2  19x/25

( x  x?12  5x%*6 —37x%/300 )
1 1 1 1 1

THEOREM 3.4. Let § be the set of all n-tuples of formal power series in an
indeterminate x with complex coefficients and let §, be the subset of the n-tuples
Jor which {1, f®,..., f*} is linearly independent over C[x] and f™(0) = 1; €
is the set of nonterminating C-n-fractions without zero entries. From Theorem

3.2 we derive a mapping ¥ : € > § and from Theorem 3.3 a mapping ¢ :
&, — € (see Diagram 3.1). Then: ¢ g, = idg, -
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& CF

qsl T«I}
¢F C €
Diagram 3.1

Remark 3.3. The matter of what happens when the construction ¢ is
applied to an #n-tuple which is linearly dependent over C[x]is not discussed in
detail. It is possible to adapt the construction ¢ from Theorem 3.3 in such a
way that there corresponds a “C-n-fraction” (of which coefficients can be
zero!) to each n-tuple taken from §&. The changes are given below.

A. f‘“(x) is a monomial for a certain i € {2,..., n}, ve N. We get f{57" =

WD — = fU =0, thus @, =0 =0,1,.,i—1). In the
n-fraction
0
0

i
|
|
1
B. f{¥(x) is a monomial for a certain p e N (or = 0, from A). Take

a,, = Oforv > p + | and change the construction into

a, +1xr(2,u+1)
sV

f.(,g)(X) e as’vxr(&v) +

RS
(@3, » G2ps1 # 03 7(3, ) < r(2, v + 1) minimal; £,(0) = 1),
; 1w | fea(x)
FO) = @y X 4 2
* Ty
(@i11, # 0; (@ + 1, v) minimal) for i = 3,....,n — 1,

Fo)
Fimx)

for v > p (i.e., a construction as if we have an (n — 1)-tuple of formal power
series!). In the n-fraction

FRG) =1+ 2o

|
|
|
|
|
f
|
1
!
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After n of these changes the n-fraction terminates and furthermore there
must exist # linearly independent dependency relations for 1, f®...., f¢),
This shows that fV,..., f™ are the MacLaurin series for an a-tuple of rational
functions. The converse is also true!

THEOREM 3.5. For the MacLaurin series for an n-tuple of rational func-
tions, the construction ¢ of Theorem 3.3 adapted according to Remark 3.3,
leads to a terminating n-fraction.

ExaMmpLE 3.2. Consider the functions 1/(1 — x), 1/(1 — x?) and
1/(1 — x*) and apply the adapted construction ¢.

1 x L x /(1 + x)
—x 'ty Tttt i
1 - x3/(1 + x + x?) T &
1——.\‘3_1+ 1 —x ’ lJr-x_x%l%—x’
¥® e —xt 4 XA + x + x%)
14 x a2 [ —x ’
o ~x(1 + x) —x+x —x5
L—x=1+ 1 +x ° T+x+ 2~ TTFxF2°
o . X+ x + x%) g XA+ x X
e S By DD B el B s R R
2(] - 2 2 —x?
__x( —;—.‘C—{—X)~—*~x Tm,
x? x
o w2y — oy Loy == 2 =1 4 -
X(l+\ - x) X l/(l—f"x), 1+" X ] i 1/(1+x)
x? = x% 4 —O— a monomial; f& follows from the next line,
X =Xx+ —9— again a monomial; % follows from the next line,

/A 4 x) =1 + (—0)/(1 + x).
There is now only one function left to go on with!

1 +x=1+x/1,

1 =1+ 0/l, the construction terminates.

640/24/3-2
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We have the 3-fraction

x —x* —x* —x3 0 0
I x2 —x* —x2 x2 0 0
1 v o—x X X — X
11 I 1 1 1 1

Calculation of the approximant triples gives

AYB:1, 14+ x, 1/(1 —x), 1)1 — x), 1)(1 — x),
A®[B 1, 1423 1+ X% (1 — x%), 1/(1 — x%),
ABIB 1T+ 1 =% 1, (15 6+ (L + 0 — ),

H( — x), /(1 — x),
H( — x%), H(1 — x?),
(I +x3 4+ x8)/(1 — x?), 1/(1 — x®).

4., REGULAR (C-#~-FRACTIONS

As in the case of the ordinary C-fractions, there is a special class which is
closely connected with sequences of Padé approximants on a stepline in the
Padé table for an n-tuple of functions (see [2, 3]). This special class gives rise
to convergence theorems which reduce to classical ones for n = 1.

DeriNiTioON 4.1, A C-n-fraction is called regular if it is nonterminating
and moreover satisfies
bio =1 (i=1,.,n—1),
a;, # 0 (i =1,.,n,veN),
r(i, 0y =0 (i=1,..,n—1),
r(i,v) = min(n + 1 — i, v) (i =1,.,mveN)

“.1)

Remark 4.1. Tn a certain way, regularity is connected with the mini-
mality of the construction from Theorem 3.3 and gaps in the power series

o, fm,

Remark 4.2. Schematically the degrees of the entries in a regular C-n-
fraction can be given by
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1 2 3 - n—1 n n
o123 - n—1n—-1 - n-—1
01 23 « 3 3 3
0 2 2 - 2 2 2

o111 - 1 1 1

Some properties of regular C-n-fractions are given below without proofs;
for these we refer to [2].

THEOREM 4.1.  For a regular C-n-fraction we have for ve N,

(=m j =0
(a) deg B(n+1)v+i _ < nv +/ . 1 / - 1’“., n
= i jo= i
(b) deg AL ;= <+ je=1l.,i—1 (i=1,..n)

<ny 4+ fj— 1 J=i-+1,..,n+1
In the cases'*), the highest power of x has the coefficient
(@) d1nn1@onie 7 Grulnin)-

() BT RN SN (i=1L,..,n).

THEOREM 4.2. Let fYU,..,f™ be the n-tuple of formal power series,
constructed by  from Theorem 3.4 from a regular C-n-fraction with
approximants {AS(x)/B(x)\t., (v € N,). Then there exists for each veN
akel{l,.., n with

FP0) — AP(x)/B(x) = dx"*' + higher powers,  d = 0.
THEOREM 4.6. For a regular C-n-fraction K, we have K e §, .

THEOREM 4.7. Let €, C & be the set of all regular C-n-fractions. Then

¢ ¢, = ids, .

Remark 4.3. Together with the result of Theorem 3.4 we have the situa-
tion of Diagram 4.1. With J* = ¢ lg_, ¢* = & |4q,

PRt = Ty = ide,
P€, C FHCF
117
¢ Co5,CCE

Diagram 4.1
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5. MAIN RESULTS

In this section we only consider C-n-fractions as in Definition 3.1 that
satisfy

r(i,0) =00 =1,..,n-—1; rl,v)y=min(n -1 —j,v) ({ = 1,..,m;veN)
(3.1
(i.e., C-n-fractions in which the exponents behave like those in a regular
C-n-fraction; the coefficients, apart from the Ist and (n + 1)st row may be
zero)
Let p be the unique real number defined by

Pn T 2—71pn—»1 + 2—2an2 e -+ 2¥n:1p A 0’ 'l) < p - i, (52)
(p = p(n) satisfies: p(1) = 1, p(n + 1} << p(n) for all n, p(n) — { for n — )

THEOREM 5.1.  Let {A{P(x)/B(x)}i; (v € N) be the approximant n-tuples of
a C-n-fraction that satisfies (5.1) and let the following hold

a; = sup | a;,| << © (i=1..m (5.3
Then the n sequences {A(x)/B(x)}5 (i = 1,..., n) converge to an n-tuple of
analytic functions, uniformly in x on each compact subset of the domain

D ={xeC, i x!<p-min(gV "1y (5.4)
(if a; == O for a certain i, it has to be omitted).
THEOREM 5.2.  Consider a C-n-fraction as in Theorem 5.1 with

a;, = limsup a,,| < o (i == l...,m) (5.5
Then the n sequences {AP(x)/BAx)}Z (i == 1,..., n) converge to an n-tuple
of functions that are analytic at x = O and meromorphic on the domain D from
(5.4). In the poles of the limit functions the C-n-fraction is j-inessentially
divergent for at least one j, j<{1,..., n}.

THEOREM 5.3. Let {A(x)/B(x)}i_1 (v €N,) be the approximants of «
regular C-n-fraction K of which the coefficients satisfy (5.3). Then lim,_,
AD(x)/B,(x) == g (x) (i == 1,..., ), uniformly in x on each compact
subset of the domain D from (5.4). The functions g'™',..., g are analytic on D
{1, g™M,..., g is linearly independent over Clx].

Furthermore, if K = (fO,.., f), then fP - : gD (i = 1,..,n) on D,
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THEOREM 5.4. Consider a situation as in Theorem 5.2, arising from a
regular C-n-fraction K. Then lm,., A (x)/B(x) = g(x) (i = 1,..., n),
where the functions g,..., g™ are analytic at x = 0 and meromorphic on D
from (5.4); {1, gV,..., g™} is linearly independent over C[x]. In the poles of
gU...., g the C-n-fraction is j-inessentially divergent for at least one j,
je{l,..., n}. Furthermore, if YK = (fNV,..,f"™), and € is the domain of
meromorphy of fU,..., f™, then we have D C € and [P = g® (i = 1,..., n)
onD.

Remark 5.1. For n = 1 Theorems 5.3 and 5.4 reduce to the theorem due
to van Vleck [14] and Pringsheim [8] (see also Perron [7, p. 148]), given in the
Introduction.

ExAMPLE 5.1. Consider the functions (1 — x)¥/2, (I — x)'/4. They have a
regular C-2-fraction with

Ga=lLag,=0+Dv+ DG~ 1D 3v-Gv+ 1)} weN),
a5 = §, Qg = (v + D + DHA3vGv + DGv + 2)} (veN),
@543 = (v + D@ + D + HAGY + DGy + 2)@Bv + 3)} (veN,)

and

a2,1 == 15 a2,3v+1 = ﬂ(3V + %)/{3 ’ (3V + 1)} (V € N)’
ay2= —} Gyze = —(3V* + v + PAGY + DBv + 2)}  (veN),
Ay 3,53 = —(v + 1/(3v + 2) (veN,

(see de Bruin [2]). Then a, = 1/27, a, = } and thus we get convergence of the
two sequences of approximants to the starting functions (uniformly in x on
compact subsets) on the domain D = {xeC || x| < 3(3'/2 — 1)/4}; there
are no poles in D! Because 3(31/2 — 1)/4 = 0,549..., we see that the con-
vergence theorem is not yet best possible.

ExAMPLE 5.2. Let B,,...,B,€ R* (i.e, > 0) and consider the hyper-
geometric series given below.

FoBy s B0 = 3

1 @

with (B)y = L(B); = BB + 1) (B +,j—1)(jeN). The numbers
BB, ..., Bn) (k = 1,..., n) are defined by

l

[TG+8) =18 = 3 BB B — k= D (By =1,

i=1 4=1
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Now let o ,..., o, € RM\{1,..., n — 1} be given, then the functions

. " By — oo 0y — J)
(n—Jj) X) . kUM .n .
f ( ]\Z:, H’;l:1 (ai “A/)k—kl
w xk-i ofn(y + k - Jj+ L., 2 + k —Jj+ 1 X)
o oF oy + 1,0, o + 15 Xx)

(j=1l,..n—1),
(5.6)

an(al seeey X 5 X)

(n) —
f (X) OFn(al +_ 19-"3 e 2% + 1’ x)

have a regular C-n-fraction with coefficients

buto = Bl — Kooy 3 — O [T] (s — K
i=1

k=1,..,n—1),
(5.7

nirorn = Biloy +v — ko 2 v — k)/n (s + v — k)i
i=1
(k = 1,...,n;veN)

Because a; = 0 (j = 1,..., n), the regular C-n-fraction converges to an n-tuple
of functions analytic at x = 0 and meromorphic on C; the limit functions
equal the functions (5.6) on the domain where the latter are meromorphic.

Remark 5.2. Of course it is possible to derive convergence results for
general C-n-fractions as can be seen from the method of proof in Section 6.
The quantities that determine the domain of convergence do not have a simple
form as in the theorems above; one could derive a theorem in which, instead
of gy l/n+1-9 (j = 1,..., n), the following quantities appear

n; = inf{[ @, |70 [a;, # 0, v = 2} (i=1,.,n),

and furthermore p from (5.2) has to be replaced by another number that must
be chosen optimal, keeping the values 7, ,..., 9, in mind (see Lemma 6.6 and
the proof of Theorem 3.1 for the choice that leads to p).

6. PROOF OF RESULTS

DerFNITION 6.1, {k,}.__n.; is the generalized Fibonacci sequence given by

kingy =k pio ==k =0, ky =1,

(6.1)
ku = ku-—l + ku—2 + _}_ ku—n (,LL € N)
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LemMa 6.1. Let 7 be the unique root, satisfying 3 <<+ < 1, of
l—z—22— - —2z" =0 6.2)

Then we have

k, ~ yr for v -— oo, v = 72 H Q2r; — Di(r; — 7) £ 0, (6.3)

j=2

where 7, 74 ,..., 7,, are the roots of (6.2).

Proof. Either use complex function theory or the method already
employed by Perron [5, Section 8]. §

Remark 6.1. Some properties of 7 = 7(n) are

@ )=1, «(2) =052 —1)/2; (b) 7(n) > r(n + 1) for all n; (c)
T(n) — 3 for n — 0.

LeMMA 6.2. Consider an n-fraction of the form given below

a . afl)

@

0

© : s dV b, £0  for veN. (6.4)
a{n) af")

0 b - b,

Let the coefficients satisfy

lab | < K(py — Dipr,  1a/by| < K(pr—Dpr (i = 2,00, 1),
@ _ @ _
l a, < p, — 1 , a, < p, — 2
bv—n b,, DPv—n """ Dy bv—(n+1—i) bv Dv—(ny1-) " Py

(i=2,...,nm  for veN\{l} (6.5

withp, = 2 (v eN), K > 0 (b’s and p’s with index <0 have to be omitted). Let
{AP|BM ) (v € N) be the approximants of (6.4) and {C'?/D,}?_, (v € N) those
of the n-fraction that follows, as in (1.10), from (6.4) by multiplying with
pi=1(j=1,..,n—1), py = 1/K, p, = p,/b, (v € N). Then

(@) A?/B, = KC¥/D, (i=1,.,nveN).

® 1D,1>Y kTl —1 @eNy.

u=0 o=1

Proof. Part (a) follows from Theorem 1.3 and the choice of the p’s.
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Furthermore the multiplication operation leads to
P e pa ! <Ip— 1,
Prtsin Py ip,— 2 (i = 2., m) (e N,
The D, then satisfy

‘ Dv i = | vava—l —;_ Pvpv—laxfn)—Dv—2 —;" ot + Pv—n e Pvav(])Dv—n—l ‘»
= Dy ] Dv~1 1 - (pv - 2)(I Dv72 | + e + [ Dv——n D - (pv - 1) l Dv—n—~1 '

or
I D, —(Dyy |+ -+ D)
Z(p,— WD =D+ +1Dnql)}  (eN)
Withd, = | D, |-(| D,y | + - + | D,y D(veN), 4y = | Dy | = 1, iteration
leads to

4, > H (r—1) (@eN). 6.6)

To derive a lower bound for the | D, |, it is necessary to express them in terms
of the 4,; it is easy to show (induction on »):

(v € N; k, from (6.1)). 6.7)

uw=v—u

D, | =Y kA4
u=0
Combination of (6.6) and (6.7) leads to assertion (b). |}

LEMMA 6.3. Consider the following system of homogeneous linear equations
in the unknowns Ay , Ay ,..., A, , depending on «, q € R*.

1: )\1:(1—Cl])é)\1+(1—é)i/\2+(1_£11)§,\3+...

+(1 —é)lhn_uré&“

o

2: )\2:(1-{—%);‘)\1—%(1—é)#/\l—{_(;_}l)_q_.iﬁ}‘er.‘.

(1= 2) o Anes g Mt
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j Aj:(1+211-)1/\_1
Jj — 2 terms
(g gt ()
i e
n — j terms
+~[};;1WAHH (= 3yt = 2),
n— 1: An_1=(1+‘1])£xn_2+(1vé)éhn_ﬁ.‘,
(=) g
[ .
n: (l—i— )'1' n—1+(1—é)_qla_2/\n~2+“.

+(1—$)7—‘Jan—~z*2

1 I |
+ (1= ) g e
In matrix notation with A = (A, ,..., A;): A(x) A7 = 0. Then there exists a g,
such that for g > g, the equation det A(a) = 0 has a real root «, with
0 < oy < g and such, that the system A(x,) A7 == 0 has a solution A with
A=LA>00G=2,..,n).

Proof. Because det A(«) is a polynomial in « with coefficients depending
on ¢ and because
1 1 1

1y 111
o

o [+

—1 0—90

lim det A(o) = \ !
g2
0
|\

1
«
A

=1 —at—
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we see that there exists a Q, > 3, such that we have a real root «yg) of the
equation det A(x) == 0 that is close to 7= (from Lemma 6.1) for ¢ => Q, ; that
close, to have 0 << , << 3 << g. Because the system then has a nontrivial real
solution for ¢ > Q, and the solution A with A; == 1, A; = 71 (i = 2,..., n) in
the limiting case, this leads to the existence of a solution A with A, = 1,
A >0 =2,..,nforqg>qgy>0. |

LEMMA 6.4. Let for q =1 the quantities 8\ (i,j = 1,...,n;veN) be
defined by the recurrence relations (6.8) given below

S =@ =18, + (g — D8+ (g — D+ g8,
8 = (g + 18 4+ (g — 18", + (g — 1) 8Py, + -
+ (q e 1) 3592.n~2 + qs.fi)z.nq s
8% = (g + D8

+@—D 8&2,5-} +@—1 8523,:‘—3 + -+ (g—1 8512141.1

j — 2 terms
+@—=D8% =D&, + gD,
n —‘j terms

+ q5» —3,n—i+1 (] - 3,..., n — 2),

801 =@+ D8 e+ (@ — D8 g+ (g — 1) 80y +
+@—=1 39%2.1 +(@—1 8.fi)n+1.1 + q85?n+1,2 s

8 =@+ D8+ @— D8+ @— D80+
+ @ =18 s+ 3201,
and initial values
=1 itj=n+1
=0 i+j#En+1 (G,j=L,..,n),
89, =0  (hjk=1,.,nwithj+k <n). (6.9)

Then there exists a constant N such that for ¢ > g, (g, from Lemma 6.3)

85’3 < N(opgy (i,j = 1,..., n;ve N; a from Lemma 6.3) (6.10)
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Proof. With g4, 09,2 = (1, A5,..., A,) as in Lemma 6.3 we now prove
the existence of constants M, such that

8) < MM(gy (i, = L, myv e N g > go).

Then (6.10) follows with N = max;; MA;,. Take M, = (0pg)?
max; (8/A) (i = 1,..., n), then 8y} < M;A(xyq) for i,j = 1,..., n. Proceed
by induction on » and consider (6. 10) proven for 1, 2,..., v — 1; inserting the
estimates in (6.8) we are led to (omit the index of «)

8% < Magy [(1 - _) M (1= é)iAz o

(1= o) A g M)

8 < Maqy [(1 +}1)§/\1 + (1 —5)#/\1 +(1 —é)—l—zhg .

qo

- (ll) é Ancs + 6% Ancas

8% < Maay [(1+ ) S hea (1= 1) 5

+ (1 - l) qJ—ll 3 ’\1 + ( ‘1,) qajlay Az + -

+ (1 - 61]) qj_llaj An -+ q,_l 7 —i+l] (I =3...n— 2)’

+ (1

80s < Mgy (14 ) 2 huea (1= 3) iz Mo

+(1_1)L3AM+ ---+(1—1)%A1

q qZ(x q n—-3yn—2

+ (1 - l) q"—zla"—l A+ —1 ’\2]’

q qn 20477'_1

s < My [+ ) b (1= Lo

-+ (1 — é) —4-21&5 Apg + =+ (1 - %) qn—zlan-l A+ qn—llan )\1]
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Because the expressions between brackets are the equations for A from
Lemma 6.3, we find (6.10) forv. |

LemMa 6.5. Consider an n-fraction as in (6.4) in which the coefficients are
analytic function of a (some) complex variable(s); q, is as in Lemma 6.3. Then
for each q > g, the n-sequences {A?|B,\> | (i = 1,..., n) converge to n analytic
Sfunctions, uniformly on each compact subset of the domain G 4 of the variable(s),
defined by the following inequalities

La by | < M,
|a,§1)/(bp-n. b)) < gf(g = 1ymint.nn 6.11)

!afi)/(bv_(mpi) - b)) < (g — (g + 1mint.ni+2-0)
(i=2,..,n  for veNi{l}

Proof. Because the differences C!?D,_; — C*,D, are constructed in the
same manner as the 8} (i, j = 1,..., n; v € N) but with coefficients that are in
absolute value less than those for the 8{) (see the proof of Lemma 6.2), we get

| Cv(l)DVJ - Cv(i))Dv ‘} ‘\\/\\ 81(71) (151 - ]9"'9 nve N)
Now apply Lemma 6.2 with p, = ¢ + 1 (v € N) and Lemma 6.4 for ¢ > g, .

40 A
Bv Bv—l

v v—1
< KN(xqY (Z kug+ kuq”‘““l)
w=0

u=0

< KN(oqY [(e19” - cog™™Y) (¢1, ¢, not depending on v)
= Blo/q) (i = 1,..., n; v € N\{1}) with B == KNu,/(c,¢5).

Together with | A7/B, | = | a{’/b; | << M (i = 1,..., n), this shows that the
n series AY/B; + Y , (4°/B, — A'?\/B,_,) are uniformly convergent on
Guley << q); because B, = b, -+ b,D,/(q + 1) has no zeros on Gy, (Lemma
6.2(b)), the assertion follows. ||

LeMMA 6.6. Let By ,..., B, be n real numbers with
0<B, <LO0<B<B(l—F) (j=2..,n (6.12)
and let an n-fraction of the form (6.4) with b, = 1 (v € N) be given. S, : C* —
Cr is the map defined by S,(x;,..., x,) = (SV,..., S™), where S (i =

1,...,n) follow from (1.7) and (L.8); V = {(xy e, X, ) €C" || x; | < B, (i =
1,..., n)}.
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Furthermore let a'? (i = 1,..., n; v € N) satisfy

LaV < B — By, 1a?

(i =2,

oy 1) for veN. (6.13)
Then S,(V)C V (v e N).

Proof. By induction on v from (1.6), (1.7), (1.8), and (6.12). |

LeEmMA 6.7. (Stieltjes—Vitali) Letr {f,(x)}>, be a sequence of functions
analytic on a domain D with

(@ [f(x) <M@reN,xeD)

(b) fi(x) tends to a limit as v — o0 on a subset of D that contains infinitely
many points and at least one limitpoint inside D.

Then {f{x)}2, converges uniformly in x on each compact subset in the

p=1

interior of D, the limit function therefore being analytic on D.
Proof. See Stieltjes [10] and Titchmarsh [13]. [

Proof of Theorem 5.1. It is obvious from Definition 1.1. that we can
restrict ourselves to C-n-fractions from Definition 3.1, satisfying (5.1) with
by’ =0 (i = 1,..., n); the approximants are denoted by {A%(x)/B,(x)}i,
(v € N,). With the coefficients of this #-fraction we form another one as in
Lemma 6.2 (formula (6.4)), with a'¥ = g, x*'- (i = 1,...,n),b, =1 for
v € N; denote the approximants by {C(x)/D,(x)}~, (v € N,). From Theorem
3.1 wederive, usingp_;, = x(j==0,1,..,n —1),p, =1 (reN)

COx) = x"4Nx) (i =1,.,n, DSx)=B(x) forveN,. (6.14)

Now take 3, =124 f,;, =21 —2-ixlp — 24292 — .. — pi(j = ],..,,
n — 1)in (6.12) with p defined by (5.2). Because in that case p = (2718,)V/* =
(2718 — B, DV®+1-9 (i = 2,..., n), the conditions are satisfied for xe D, D
defined by (5.4). The approximants C(x)/D,(x) (i = 1,..., n; v € N) therefore
are bounded rational functions of x on D and thus analytic. Finally apply
Lemma 6.7 using the fact that there exists a small circular domain around
x = 0 on which the n-fraction converges as can be seen by Lemma 6.5. This
leads to uniform convergence of {C!¥(x)/D,(x)}y, (i = 1,..., n) on compact
subsets of © and therefore to the same for the sequences {A?(x)/B.(x)}:,
(i = 1,...,, n) on compact subsets of D\{0}. Applying Lemma 6.5 to the n-
fraction with approximants A¥(x)/B,(x) directly, we derive the existence of
a (maybe very small) § > 0, such that the sequences converge uniformly on
I x | <~ 8. Combining two overlapping regions of uniform convergence, we
are led to the assertion of the theorem using analytic continuation. ||
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Proof of Theorem 5.2.  Apply Theorem 2.1 (formulas (2.2) and (2.3)) and
Theorem 5.1 on (I — €D = {yeCiy=(1 - e x, xeD} (e 0), where A
in (2.2) follows from

—1/{n+1-7}

min(7; ) < (1 — € min(a, V"1

with v, == sup,s, | 4; , | and a; as before (i = 1,..., n).

The poles come in when piecing the two parts of the n-fraction together. It
is obvious from Corollary 1.1 that a pole of one of the limit functions is a zero
x, of the denominator of the rational functions

(f:n)Aii—)l + e+ fil)Av(i)n + al,uanv(i)nﬂ)/

By o+ o+ EVB o+ @B, )

Em0) =1 for v eN; the denominator does not vanish identically
because it has the value | at x = 0). If there is a value of j for which the
numerator is different from zero for x = x,, we can apply Theorem 2.4. If ail
numerators vanish for x = x, (x, clearly satisfies x, 5 0), we would have a
system of homogeneous linear equations

A,y (EP(x)ees EP (), a1, %,") = 0

which has a nontrivial solution (a, ,x,” 7 0), contradictory to the fact that
det A,_, = 0 as follows from the restrictions on a; (v € N) and formula

(1.10). 1

Proof of Theorem 5.3. The main part follows from Theorem 5.1 while the
linear independence follows by Theorem 4.6 once we have proved f (& == g9
on D (i = 1,..., n). This follows from the so-called “Weierstrasschen Doppel-
reihensatz” (see Perron [7, page 147]), applied to each of the n series of
approximants separately. Using analytic continuation and the fact that the
convergence is uniformly in x on compact subsets of D, it is obvious that the
singularities of the f% (i = 1,..., n), if there are any, cannot lie in the interior
of ®. |

Proof of Theorem 5.4. Follows from Theorem 5.2. In the same manner as
in the proof of Theorem 5.3 we can show that the poles of f,..., ™ cannot
lie in the interior of © and that 9 = g@ on D (i = 1,..., n), whence the
linear independence of the g’s by Theorem 4.6. |}
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Proof of Example 5.2. Define the quantities x!” (i = 1,..., n; v € N) by

(n—3) __ > ‘Bk((xl —+- v .a .y Oy + v _J)
* :L::j (0% + v = Den

XOFn(a1+k+V—_1+l,...,an+k+v—j+1;x)

(j = 1..,m), (6.15)
xfﬂ) = OFn(al + Vyeors Otp + v X)~

Substituting appropriate values for f, ...., B, in

an(Bl sueey ﬁn 5 x) - O]Fn(ﬁl + 1;“'9 B’n + 17 'x)

o0

:Zﬂé@ﬁﬂ—ﬁ&%ﬂg@mg

}EMZ(J—k+1)kx’/J ]‘[(/5’ + k 4+ Dy

(IB )k*l =k

i=1 +1

we find that the quantities from (6.15) satisfy

(n) (n) (n-1)
xv" - xvzl + xvz—l ’

(n ) = B(O‘1+V_], aan+V_l)x/n(°‘ +V“I)a+1§x5:‘-)1
+ Ylf‘.':l] D (l = lv"a n— 1)7 (6.16)
0 _ Y. n o ) (n)
X, = X H (o +v n)n+15 Xpi1 »
i=1

Then the definition f{” = x¥/x{); (i = 1,..,n;p € N,) leads to a non-
terminating set of equations like (1.4) (or as in Theorem 3.3), with

=7 B(OL — Joees O — ]) n)
b(n 9 1 seeey &y =1,.,n—1), bl =1,
’ H"_] ({Xz l)]+l (I ) 0
and for p e N
a(n+1—:i) — Bj(% T+ = Jreey Oy + B —J) _

M j = 1,..., n), b, =1.
 § T Co ( )
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Comparing this with the construction in Theorem 3.3, we see that the starting
functions are f{V,..., f{", given by

f (w 7)()() Z Bk(o‘l = Jaeres *X.n — /) v
—j i=1 (% — oa
’ oFuly —k—j— Lo x, +k—j+1;x)

()Fn('\x] - ]*'“’ Xy + 1: _Y)

(n) o oF (g 5oy @, 1 X) B
Ly Y AN N =

(j=1,.,n0—1),

Applying the construction of Theorem 3.3 to the functions xf§" ' (x)
(j=0,1,..,n— 1), we find that the functions in (5.6) indeed have a regular
C-n-fraction with coefficients given by (5.7); this is also obvious from
Theorem 1.3 with multiplicators p_; = x 1 (j = 1,..,n — 1), p, = 1L (€ N,).
The matter of convergence is easily settled, because we can give estimates for
BBy ..., Bn) (k = 1,...,n) using the elementary symmetric functions in
Bi »-.-» B and Stirling numbers of the second kind. There exists a constant M,
only depending on n, such that we get with 8 = max{l, 8, ,..., B}

Bk(/gl yeney Bn) (\< MBnAk (k = 1,..., n).
Inserting this bound in (5.7), we have with a -= max{a, ,..., &,}
Papiioen | < Mo +v — k) F =k (k= 1,.,nv=n+ 1),

after which application of Theorem 5.2 leads to the desired result. ||
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